Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutr Metab (Lond) ; 20(1): 36, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37653494

RESUMO

BACKGROUND: Higher dietary quality, including increased vegetable consumption, was associated with a reduced risk of metabolic syndrome (MetS). However, specific vegetable consumption in the development of MetS remains obscure. Our study aimed to investigate the correlation between starchy and non-starchy vegetables and MetS. METHODS: Secondary data analysis from the National Health and Nutrition Examination Survey (NHANES 1999-2018). MetS was defined by National Cholesterol Education Program-Adult treatment Panel III (NCEP ATPIII) and dietary consumption was assessed by trained staff using two 24-h diet recall methods. Weighted logistic regression analysis was carried out to estimate odds ratios (ORs) and 95% confidence intervals (CIs). Subgroup analyses and restricted cubic spline (RCS) regression were performed to further investigate specific vegetable subtypes and MetS. RESULTS: This research enrolled 24,646 individuals (11,725 females and 12,921 males), with an average age of 45.84 ± 0.23 years. Approximately 15,828(64.22%) participants were defined to be with non-MetS and 8818(35.78%) were with MetS. Both total starchy vegetables and potatoes were associated with increased MetS risk, with the corresponding OR per standard deviation (SD) (95%CI, p-trend) being 1.06(1.02-1.11, p-trend = 0.028) and 1.08(1.04-1.13, p-trend = 0.011), respectively. However, an inverse correlation was found between dark-green vegetables and MetS, and the OR per SD (95%CI, p-trend) was 0.93(0.90-0.97, p-trend = 0.010). Subgroup analyses showed that the positive associations of starchy vegetables and potatoes on MetS risk were stronger in non-Hispanic White participants (p for interaction < 0.050). CONCLUSION: Total starchy vegetables and white potatoes were both associated with an increased risk of MetS, while consumption of dark-green vegetables was negatively associated with MetS risk. These findings might provide a promising and healthy dietary strategy for preventing MetS.

2.
Exp Gerontol ; 179: 112258, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37460025

RESUMO

BACKGROUND: Growing evidence has increasingly validated that individuals with diabetes/prediabetes have a higher prevalence of low skeletal muscle mass and function compared to healthy individuals. The anti-inflammatory diet is considered a promising and modifiable approach to optimize skeletal muscle quality. However, current evidence on the relation of dietary inflammatory potential with low muscle mass among diabetic/prediabetic patients is limited. METHODS: Dietary consumption was determined by trained staff using the 24-hour diet recall method, and the Dietary Inflammatory Index (DII) was scored based on a previously validated approach that included 26 food parameters. Dual-energy X-ray absorptiometry was used to assess the mass of skeletal muscle and low muscle mass was defined based on the sarcopenia index. Logistic regression was conducted to calculate odds ratios (ORs) and 95 % confidence intervals (CIs). Restricted cubic spline (RCS) analysis was also performed to visually represent the relationship between DII and low muscle mass. Furthermore, sensitivity and subgroup analyses were conducted. RESULTS: In this study, a total of 4269 eligible participants were registered, comprising 1975 (46.26 %) females and 2294 (53.74 %) males. The mean age was 49.98 ± 0.31 years old, and the mean DII score was 1.53 ± 0.04. Among them, 934 (21.88 %) patients were defined as having low muscle mass, while 3335 (78.12 %) were without low muscle mass. The highest tertile (T3) of DII had an 61 % increased risk of low muscle mass (OR = 1.61, 95%CI: 1.19-2.17, p for trend = 0.004) compared to the lowest tertile. The RCS curve displayed a linear dose-response relationship between DII score and low muscle mass risk in patients with diabetes/prediabetes. Subgroup and sensitivity analyses provided robustness to our results. CONCLUSIONS: Our results indicated that a higher DII score was associated with an increased risk of low muscle mass among diabetes/prediabetes patients. These findings provided a nutritional strategy for diabetes/prediabetes patients to prevent skeletal muscle mass loss.


Assuntos
Diabetes Mellitus , Dieta , Músculo Esquelético , Estado Pré-Diabético , Humanos , Diabetes Mellitus/fisiopatologia , Estado Pré-Diabético/fisiopatologia , Músculo Esquelético/fisiopatologia , Inflamação , Inquéritos Nutricionais , Masculino , Feminino , Adulto , Pessoa de Meia-Idade
3.
Commun Biol ; 5(1): 774, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915136

RESUMO

While the exact mechanism remains unclear, type 2 diabetes mellitus increases the risk of sarcopenia which is characterized by decreased muscle mass, strength, and function. Whole-transcriptome RNA sequencing and informatics were performed on the diabetes-induced sarcopenia model of db/db mice. To determine the specific function of lncRNA Gm20743, the detection of Mito-Sox, reactive oxygen species, Ethynyl-2'-deoxyuridine, and myosin heavy chain was performed in overexpressed and knockdown-Gm20743 C2C12 cells. RNA-seq data and informatics revealed the key lncRNA-mRNA interactions and indicated a potential regulatory role of lncRNAs. We characterized three core candidate lncRNAs Gm20743, Gm35438, 1700047G03Rik, and their potential function. Furthermore, the results suggested lncRNA Gm20743 may be involved in regulating mitochondrial function, oxidative stress, cell proliferation, and myotube differentiation in skeletal muscle cells. These findings significantly improve our understanding of lncRNAs that may mediate muscle mass, strength, and function in diabetes and represent potential therapeutic targets for diabetes-induced sarcopenia.


Assuntos
Diabetes Mellitus Tipo 2 , RNA Longo não Codificante , Sarcopenia , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Camundongos , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Sarcopenia/genética , Transcriptoma
4.
Exp Gerontol ; 166: 111891, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35809807

RESUMO

Sarcopenia seriously affects the quality of life of the elderly, but its molecular mechanism is still unclear. Degeneration in muscle innervation is related to age-related movement disorders and muscle atrophy. The expression of CHRNA1 is increased in the skeletal muscle of the elderly, and in aging rodents. Therefore, we investigated whether CHRNA1 induces the occurrence and development of sarcopenia. Compared with the control group, local injection of AAV9-CHRNA1 into the hindlimb muscles decreased the percentage of muscle innervation. At the same time, the skeletal muscle mass decreased, as manifested by a decrease in the gastrocnemius mass index and the cross-sectional area of the muscle fibers. The function of skeletal muscle also decreased, which was manifested by decreases of compound muscle action potential and muscle contractility. Therefore, we concluded that upregulation of CHRNA1 can induce and aggravate sarcopenia.


Assuntos
Receptores Nicotínicos , Sarcopenia , Envelhecimento/fisiologia , Animais , Camundongos , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/fisiologia , Atrofia Muscular/patologia , Qualidade de Vida
5.
Aging Cell ; 21(7): e13659, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35712918

RESUMO

Aging-related sarcopenia is currently the most common sarcopenia. The main manifestations are skeletal muscle atrophy, replacement of muscle fibers with fat and fibrous tissue. Excessive fibrosis can impair muscle regeneration and function. Lysyl oxidase-like 2 (LOXL2) has previously been reported to be involved in the development of various tissue fibrosis. Here, we investigated the effects of LOXL2 inhibitor on D-galactose (D-gal)-induced skeletal muscle fibroblast cells and mice. Our molecular and physiological studies show that treatment with LOXL2 inhibitor can alleviate senescence, fibrosis, and increased production of reactive oxygen species in fibroblasts caused by D-gal. These effects are related to the inhibition of the TGF-ß1/p38 MAPK pathway. Furthermore, in vivo, mice treatment with LOXL2 inhibitor reduced D-gal-induced skeletal muscle fibrosis, partially enhanced skeletal muscle mass and strength and reduced redox balance disorder. Taken together, these data indicate the possibility of using LOXL2 inhibitors to prevent aging-related sarcopenia, especially with significant fibrosis.


Assuntos
Galactose , Sarcopenia , Aminoácido Oxirredutases/metabolismo , Aminoácido Oxirredutases/farmacologia , Animais , Fibrose , Galactose/farmacologia , Camundongos , Músculo Esquelético/metabolismo , Proteína-Lisina 6-Oxidase/farmacologia , Sarcopenia/induzido quimicamente , Sarcopenia/tratamento farmacológico , Sarcopenia/patologia
6.
Cell Death Dis ; 12(12): 1115, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34845191

RESUMO

Age-related loss of skeletal muscle mass and function, termed sarcopenia, could impair the quality of life in the elderly. The mechanisms involved in skeletal muscle aging are intricate and largely unknown. However, more and more evidence demonstrated that mitochondrial dysfunction and apoptosis also play an important role in skeletal muscle aging. Recent studies have shown that mitochondrial calcium uniporter (MCU)-mediated mitochondrial calcium affects skeletal muscle mass and function by affecting mitochondrial function. During aging, we observed downregulated expression of mitochondrial calcium uptake family member3 (MICU3) in skeletal muscle, a regulator of MCU, which resulted in a significant reduction in mitochondrial calcium uptake. However, the role of MICU3 in skeletal muscle aging remains poorly understood. Therefore, we investigated the effect of MICU3 on the skeletal muscle of aged mice and senescent C2C12 cells induced by D-gal. Downregulation of MICU3 was associated with decreased myogenesis but increased oxidative stress and apoptosis. Reconstitution of MICU3 enhanced antioxidants, prevented the accumulation of mitochondrial ROS, decreased apoptosis, and increased myogenesis. These findings indicate that MICU3 might promote mitochondrial Ca2+ homeostasis and function, attenuate oxidative stress and apoptosis, and restore skeletal muscle mass and function. Therefore, MICU3 may be a potential therapeutic target in skeletal muscle aging.


Assuntos
Antioxidantes/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Músculo Esquelético/metabolismo , Sarcopenia/fisiopatologia , Envelhecimento , Animais , Humanos , Camundongos
8.
Biochem Biophys Res Commun ; 533(4): 1226-1232, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33069361

RESUMO

Skeletal muscle is the largest tissue in the body, and plays a remarkable role in energy and metabolic homeostasis. Disorder in lipid metabolism and glucose utilization could impair the quality and function of skeletal muscle. Glutaredoxin-1 (Grx1) acts as a vital metabolic regulator of redox homeostasis. Recent studies have shown that Grx1 regulates hepatic lipid metabolism. The skeletal muscle also contains abundant Grx1, but the role of Grx1 in skeletal muscle remains unknown. Therefore, we investigated the effect of Grx1 on skeletal muscle. In this study, we found that Grx1-deficient mice (Grx1-/-) spontaneously developed muscle atrophy by 3 months of age. And the p-AMPK activity and Sirt1 activity were inhibited in Grx1-/- mice, which led to intramuscular lipid deposition and glucose utilization disorder in skeletal muscle. However, intraperitoneal injection of metformin for 15 consecutive days ameliorated skeletal muscle atrophy caused by Grx1 deficiency to a certain extent. Taken together, these findings indicate that Grx1 deficiency might induce skeletal muscle atrophy by regulating the intramuscular lipid deposition and glucose utilization, which could be attenuated by metformin. Therefore, the expression or activity of Grx1 may be a pharmacological approach to ameliorate muscle atrophy diseases, such as sarcopenia.


Assuntos
Glucose/metabolismo , Glutarredoxinas/genética , Metabolismo dos Lipídeos , Metformina/uso terapêutico , Músculo Esquelético/metabolismo , Atrofia Muscular/tratamento farmacológico , Animais , Feminino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia
9.
Life Sci ; 258: 118243, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32791154

RESUMO

AIMS: Although autophagy impairment is a well-established cause of muscle atrophy and P300 has recently been identified as an important regulator of autophagy, the effects of P300 on autophagy and muscle atrophy in type 2 diabetes (T2D) remain unexplored. We aimed at characterizing the role of P300 in diabetic muscle and its underlying mechanism. MAIN METHODS: Protein levels of phosphorylated P300, total P300, acetylated histone H3, LC3, p62 and myosin heavy chain, and mRNA levels of Atrogin-1 and MuRF1 were analyzed in palmitic acid (PA)-treated myotubes and db/db mice. Autophagic flux was assessed using transmission electron microscopy, immunofluorescence and mRFP-GFP-LC3 lentivirus transfection in cells. Muscle weight, blood glucose and grip strength were measured in mice. Hematoxylin and eosin (H&E) staining was performed to determine changes in muscle fiber size. To investigate the effects of P300 on autophagy and myofiber remodeling, a P300 specific inhibitor, c646, was utilized. 3-Methyladenine (3-MA) was utilized to inhibit autophagosomes formation, and chloroquine (CQ) was used to block autophagic flux. KEY FINDINGS: Phosphorylation of P300 in response to PA enhanced its activity and subsequently suppressed autophagic flux, leading to atrophy-related morphological and molecular changes in myotubes. Inhibition of P300 reestablished autophagic flux and ameliorated PA-induced myotubes atrophy. However, this effect was largely abolished by co-treatment with the autophagy inhibitor CQ. In vivo results demonstrated that inhibition of P300 partially rescued muscle wasting in db/db mice, accompanied with autophagy reactivation. SIGNIFICANCE: The findings revealed that T2D-induced overactivation of P300 contributes to muscle atrophy by blocking autophagic flux.


Assuntos
Autofagia/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Proteína p300 Associada a E1A/metabolismo , Atrofia Muscular/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Proteína p300 Associada a E1A/genética , Força da Mão/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Atrofia Muscular/genética , Atrofia Muscular/patologia , Mioblastos/metabolismo , Mioblastos/patologia
10.
Nan Fang Yi Ke Da Xue Xue Bao ; 40(1): 104-109, 2020 Jan 30.
Artigo em Chinês | MEDLINE | ID: mdl-32376563

RESUMO

OBJECTIVE: To investigate the changes of skeletal muscle mass and strength and the expressions of matrix metalloproteinase-1 (MMP-1), tissue inhibitor of metalloproteinases-1 (TIMP-1) and collagen-1 in the skeletal muscle of aged rats with sarcopenia. METHODS: With 11 young (6-month-old) SD rats as control group, 18 aged (25-month-old) SD rats were divided into two groups (n=9) according to the relative lean mass determined dual X-ray absorptiometry (DXA), namely aged control group and aged sarcopenia group (the relative lean mass was 2SD higher in aged control than in aged sarcopenia group. The forelimb grip strength of the rats was measured using an electronic grip strength meter. The extracellular matrix (ECM) of the rat's gastrocnemius was observed with HE staining and sirius Red staining, and the protein expressions of collagen-1, MMP-1, and TIMP-1 in the muscular tissues were detected with Western blotting. RESULTS: Compared with the young rats, the aged control rats had significantly lower relative grip strength (P < 0.01) and increased expressions of collagen-1 and TIMP-1 (P < 0.05) and ECM content in the skeletal muscles, but the relative lean mass and MMP-1 protein expression were comparable between the two groups (P>0.05). Compared with the aged control rats, the aged sarcopenic rats had significantly lowered relative lean mass (P < 0.01) and MMP-1 expressions of (P < 0.05) and increased expressions of collagen-1 and TIMP-1 proteins and ECM content in the muscular tissues (P < 0.05) without significant changes in the relative grip strength (P>0.05). CONCLUSIONS: MMP-1/TIMP-1 imbalance in the skeletal muscle during aging affects ECM metabolism and leads to increased collagen fibers, which in turn affects the skeletal muscle mass and function and contribute to the onset of sarcopenia.


Assuntos
Envelhecimento , Metaloproteinase 1 da Matriz/metabolismo , Músculo Esquelético/metabolismo , Sarcopenia/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Animais , Metaloproteinase 13 da Matriz , Músculo Esquelético/patologia , Ratos , Ratos Sprague-Dawley
11.
PeerJ ; 7: e7199, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31304063

RESUMO

This study investigated the effects of resveratrol feeding and exercise training on the skeletal muscle function and transcriptome of aged rats. Male SD rats (25 months old) were divided into the control group (Old), the daily exercise training group (Trained), and the resveratrol feeding group (Resveratrol). After 6 weeks of intervention, the body mass, grip strength, and gastrocnemius muscle mass were determined, and the muscle samples were analyzed by transcriptome sequencing. The differentially expressed genes were analyzed followed by GO enrichment analysis and KEGG analysis. The Old group showed positive increases in body mass, while both the Trained and Resveratrol groups showed negative growth. No significant differences in the gastrocnemius muscle index and absolute grip strength were found among the three groups. However, the relative grip strength was higher in the Trained group than in the Old group. Only 21 differentially expressed genes were identified in the Trained group vs. the Old group, and 12 differentially expressed genes were identified in the Resveratrol group vs. the Old group. The most enriched GO terms in the Trained group vs. the Old group were mainly associated with RNA metabolic processes and transmembrane transporters, and the significantly upregulated KEGG pathways included mucin-type O-glycan biosynthesis, drug metabolism, and pyrimidine metabolism. The most enriched GO terms in the Resveratrol group vs. the Old group were primarily associated with neurotransmitter transport and synaptic vesicle, and the upregulated KEGG pathways included synaptic vesicle cycle, nicotine addiction, retinol metabolism, insulin secretion, retrograde endocannabinoid signaling, and glutamatergic synapse. Neither exercise training nor resveratrol feeding has a notable effect on skeletal muscle function and related gene expression in aged rats. However, both exercise training and resveratrol feeding have strong effects on weight loss, which is beneficial for reducing the exercise loads of the elderly.

12.
Exp Neurol ; 311: 44-56, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30219731

RESUMO

Diabetes mellitus (DM) can increase the risk of Alzheimer's disease (AD) in patients. However, no effective approaches are available to prevent its progression and development. Recently, autophagy dysfunction was identified to be involved in the pathogenesis of neurodegenerative diseases. This study was designed to investigate the effect of metformin on hyperphosphorylated tau proteins in diabetic encephalopathy (DE) by regulating autophagy clearance. db/db mice were randomly divided into four groups, db/+ mice were used as control group. Twelve-week old male db/db mice received consecutive intraperitoneal injection of 200 mg/kg/d metformin or (and) 10 mg/kg/d chloroquine for eight weeks. Morris water maze (MWM) tests were performed to test cognitive functions before the mice were euthanized. Metformin attenuated cognitive impairment in db/db mice, reduced hyperphosphorylated tau proteins, restored the impaired autophagy in diabetic mice, all of which were reversed by inhibiting of autophagy activity. In high glucose-cultured HT22 cells, metformin increased autophagy in a dose-dependent manner. Besides, metformin enhanced autophagy activity in an AMPK dependent manner. These data show that metformin may reduce tauopathy and improve cognitive impairment in db/db mice by modulating autophagy through the AMPK dependent pathway. These findings highlight metformin as a new therapeutic strategy for the treatment of DE.


Assuntos
Autofagia/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Tauopatias/metabolismo , Proteínas tau/metabolismo , Animais , Autofagia/fisiologia , Linhagem Celular , Diabetes Mellitus Experimental/tratamento farmacológico , Relação Dose-Resposta a Droga , Hipoglicemiantes/farmacologia , Masculino , Metformina/farmacologia , Camundongos , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Distribuição Aleatória , Tauopatias/tratamento farmacológico
13.
J Cell Mol Med ; 22(12): 6087-6098, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30246940

RESUMO

Diabetes is considered as a risk for cognitive decline, which is characterized by neurodegenerative alteration and innate immunity activation. Recently, complement 3 (C3), the critical central component of complement system, has been reported to play a key role in neurodegenerative alterations under pathological condition. Receptor for advanced glycation end products (RAGE) activation is confirmed to mediate several inflammatory cytokines production. However, whether C3 activation participates in the diabetic neuropathology and whether this process is regulated by RAGE activation remains unknown. The present study aimed to investigate the role of C3 in streptozotocin-induced diabetic mice and high glucose-induced primary astrocytes and the underlying modulatory mechanisms. The decreased synaptophysin density and increased C3 deposition at synapses were observed in the diabetic brain compared to the control brain. Furthermore, the elevated C3 was co-localized with GFAP-positive astrocytes in the diabetic brain slice in vivo and high glucose-induced astrocytes culture in vitro. Diabetes/high glucose-induced up-regulation of C3 expression at gene, protein and secretion levels, which were attenuated by pre-treatment with RAGE, p38MAPK and NF-κB inhibitors separately. These results demonstrate that high glucose induces C3 up-regulation via RAGE- p38MAPK-NF-κB signalling in vivo and in vitro, which might be associated with synaptic protein loss.


Assuntos
Complemento C3/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus/genética , Receptor para Produtos Finais de Glicação Avançada/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Células Cultivadas , Ativação do Complemento/efeitos dos fármacos , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Diabetes Mellitus Experimental/patologia , Glucose/administração & dosagem , Produtos Finais de Glicação Avançada/genética , Humanos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , NF-kappa B/genética , Sinapses/genética , Sinapses/metabolismo , Fator de Transcrição RelA/genética
14.
Mech Ageing Dev ; 169: 32-39, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29325930

RESUMO

The present study aimed to reveal aging-related changes in the skeletal muscle of SD rats by comparing transcriptome analysis, integrated with muscle physiological parameters. Ten rats aged 25 months were set as the old group (OG) and ten rats aged 6 months were set as the young group (YG). After 6 weeks of feeding, the body mass, grip strength, and gastrocnemius muscle mass were determined, and the differentially expressed genes were analyzed by transcriptome sequencing, followed by GO enrichment analysis and KEGG analysis. The results showed that the muscle index and the relative grip strength were lower in OG rats than YG rats. The expressions of AMPK, UCP3, IGF-1, several ion channel associated genes and collagen family genes were down-regulated in OG rats. MGMT, one of the strength determining genes and CHRNa1, a subunit of the acetylcholine receptor were up-regulated in OG rats. The present results supply the global transcriptomic information involved in aging related skeletal muscle dysfunction in rats. The reduced expressions of AMPK, IGF-1, and CASK can explain the losses of muscle mass and function in the aged rats. In addition, the up-regulation of MGMT and CHRNa1 also contribute to muscle wasting and weakness during aging.


Assuntos
Envelhecimento/metabolismo , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Transcriptoma , Envelhecimento/patologia , Animais , Masculino , Músculo Esquelético/patologia , Ratos , Ratos Sprague-Dawley
15.
Exp Cell Res ; 363(2): 171-178, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29294308

RESUMO

Diabetes, characterized by chronic hyperglycemia, is known to induce synaptic degeneration in the brain, thereby resulting in cognitive dysfunction. Thrombospondin-1(TSP-1), the secreted protein produced by astrocytes, plays a crucial role in promoting synapse formation. Toll-like receptor 9 (TLR9) has been widely known to initiate the innate immune response. We recently reported TLR9 activation in neurons results in tau hyperphosphorylation induced by HG in vitro. Its activation has been also considered to mediate oxidative stress and astrocytic dysfunction under pathological circumstance. However, whether astrocytic TSP-1 alteration plays a role in synaptic protein loss under high glucose condition and whether TLR9 activation is involved in this process have not been reported. In this study, we found that primary mouse astrocytes incubated in high glucose (30mM) induced a significant decreased TSP-1 secretion and increased intracellular contents of TSP-1 without affecting transcription level. Addition of conditioned medium from high glucose (30mM) treated astrocytes to the primary neurons exhibited reduced synaptic proteins expression, which was attenuated by treatment with exogenous rTSP-1. In addition, we demonstrated that TLR9 activation along with reactive oxygen species (ROS) generation in astrocytes was induced by high glucose (30mM). Furthermore, we explored the relationship between TLR9 activation and TSP-1 production. Both TLR9 deficiency and the antioxidant N-acetyl-L-cysteine treatment improved altered intra- and extracellular TSP-1 levels under high glucose condition. Together, our findings suggest that high glucose (30mM) impairs TSP-1 secretion from astrocytes, which depends on astrocytic dysfunction associated with TLR9 activation mediated ROS signaling, ultimately contributing to the synaptic proteins loss.


Assuntos
Astrócitos/metabolismo , Glucose/farmacologia , Neurônios/metabolismo , Trombospondina 1/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células Cultivadas , Meios de Cultivo Condicionados , Feminino , Glucose/metabolismo , Masculino , Camundongos , Sinapses/metabolismo
16.
Nan Fang Yi Ke Da Xue Xue Bao ; 37(10): 1405-1409, 2017 Oct 20.
Artigo em Chinês | MEDLINE | ID: mdl-29070475

RESUMO

OBJECTIVE: To observe the effect of resveratrol on muscle mass, forelimb grip strength, myofibril structure and AMPK/sirt1 pathway in skeletal muscles of aged rats. METHODS: Twenty aged (25 months old) SD rats were randomly divided into aged control group and resveratrol treatment group (10 in each group) with 10 young (6 months old) rats served as the young control group. In resveratrol treatment group, the rats were treated with resveratrol (mixed in chow) for 6 weeks. After the treatment, the mass of the gastrocnemius was measured and the sarcopenia index (SI) was calculated as the gastrocnemius mass (mg) to body weight (g) ratio. The forelimb grip strength of the rats was measured using a electronic grip strength meter, and the lengths of the sarcomere, I-band, A-band and H-zone of the myofibrils were determined by transmission electron microscopy. RESULTS: Compared with the young rats, the aged control rats had significantly lower SI of the gastrocnemius (P<0.05) and grip strength (P<0.05) with increased lengths of the sarcomere, A-band, I-band and H-zone (P<0.05) and lowered expressions of AMPK, P-AMPK, and sirt1 protein (P<0.05). Resveratrol treatment of the aged rats significantly increased the forelimb grip strength, reduced the lengths of sarcomere length, I-band and H-zone (P<0.05) and increased, P-AMPK, sirt1 protein expressions (P<0.05) without significantly affecting the SI (P>0.05) or the A-band length (P>0.05). CONCLUSION: Resveratrol does not improve the muscle mass but can increase the forelimb grip strength in aged rats possibly by activating AMPK/sirt1 pathway to improve the ultrastructure of the myofibrils.


Assuntos
Envelhecimento , Força Muscular , Miofibrilas/química , Resveratrol/farmacologia , Adenilato Quinase/metabolismo , Animais , Membro Anterior , Músculo Esquelético/fisiologia , Miofibrilas/ultraestrutura , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Sirtuína 1/metabolismo
17.
Exp Cell Res ; 359(2): 312-318, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28803064

RESUMO

Diabetic encephalopathy (DE) is one of the most common complications of diabetes. The major pathological variations include neurofibrillary tangles (NFTs), which are caused by tau hyperphosphorylation, and senile plaques (SPs) consisting of amyloid ß- protein(Aß) deposits. In recent years, DE research studies have focused on exploring the activation of the inflammatory signaling pathway in immune cells. Toll-like receptor 9 (TLR9) is well known to regulate the inflammatory reactions in immune processes. During the tau hyperphosphorylation process, TLR9 in microglia plays bidirectional roles. However, no studies have clearly demonstrated the relationship between TLR9 and tau hyperphosphorylation in neurons. Based on our experiments, we found significant increase in TLR9 expression in neurons and an increase in tau hyperphosphorylation in high-glucose media. However, these alterations can be reversed by TLR9 inhibitor. Furthermore, we specifically inhibited the activation of P38mitogenactivated protein kinase(P38MAPK) and found an effective decrease in tau hyperphosphorylation. This effect is likely related to Unc93b1. Meanwhile, High glucose levels can induce neuronal apoptosis via the TLR9 signaling pathway. Our studies are the first to reveal that high glucose can regulate tau hyperphosphorylation and neuronal apoptosis via TLR9-P38MAPK signaling pathway. These findings provide a new method for studying the mechanism underlying DE.


Assuntos
Glucose/toxicidade , Neurônios/efeitos dos fármacos , Receptor Toll-Like 9/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas tau/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Regulação da Expressão Gênica , Hipocampo , Imidazóis/farmacologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Piridinas/farmacologia , Transdução de Sinais , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/antagonistas & inibidores , Receptor Toll-Like 9/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas tau/metabolismo
18.
Exp Gerontol ; 98: 177-183, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28847722

RESUMO

Sarcopenia is an age-related syndrome characterized by progressive loss of muscle mass and function. Exercise is an important strategy to prolong life and increase muscle mass, and resveratrol has been shown a variety beneficial effects on skeletal muscle. In the present study, we investigated the potential efficacy of using short-term exercise (six weeks), resveratrol (150mg/kg/day), or combined exercise+resveratrol (150mg/kg/day) on gastrocnemius muscle mass, grip strength, cross-sectional area and microscopic morphology in aged rats, and explored the potential mechanism at the apoptosis level. Six months old SD rats were used as young control group and 24months old SD rats were adopted as aged group. After six weeks intervention, the data provide evidence that exercise, resveratrol or their combination significantly increase the relative grip strength and muscle mass in aged rats (P<0.05). Electron microscopy discovered a significant increase in sarcomere length, I-band and H-zone in aged rats (P<0.05), and exercise, resveratrol or their combination significantly reduced the increasement (P<0.05). Moreover, light microscopy revealed a significant increase on Feret's diameter and cross-sectional area (CSA) in aged rats (P<0.05), but exercise and resveratrol did not show significant effects on them (P>0.05). Furthermore, exercise, resveratrol or their combination significantly increased the expression of p-AMPK and SIRT1, decreased the expression of acetyl P53 and Bax/Bcl-2 ratio in aged rats (P<0.05). These findings show that aged rats show significant changes in gastrocnemius muscle morphology and ultrastructure, and the protective effects of exercise, resveratrol and their combination are probably associated with anti-apoptotic signaling pathways through activation of AMPK/Sirt1.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Terapia por Exercício , Músculo Esquelético/efeitos dos fármacos , Condicionamento Físico Animal/métodos , Sarcopenia/prevenção & controle , Sirtuína 1/metabolismo , Estilbenos/farmacologia , Fatores Etários , Envelhecimento , Animais , Apoptose/efeitos dos fármacos , Terapia Combinada , Modelos Animais de Doenças , Masculino , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/enzimologia , Fibras Musculares Esqueléticas/patologia , Força Muscular/efeitos dos fármacos , Músculo Esquelético/enzimologia , Músculo Esquelético/fisiopatologia , Músculo Esquelético/ultraestrutura , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Sprague-Dawley , Resveratrol , Sarcopenia/enzimologia , Sarcopenia/patologia , Sarcopenia/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
19.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 20(3): 392-7, 2003 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-14564996

RESUMO

For the purpose of increasing the hydrophilicity of poly aspartic acid, a series of polymer of L-aspartic acid and 4-aminobutanoic acid with different ratios (mol/mol) were prepared. The copolymers were characterized by 13CNMR, DSC and x-ray. The confirmed the structures of the polymers. In-vitro tests of release at phosphate buffer saline, enzyme solution of trypsin and papain (37.0 degrees C, pH = 7.4) were carried out. The result indicated that the polymers could be degraded in some degree, and that 4-aminobutanoic acid segments accelerated the degradation rate of the polymers. Skin irritation test and systemic acute toxicity test were carried out, which showed that the polymer was a nontoxic biomedical material.


Assuntos
Ácido Aspártico/química , Polímeros/síntese química , Polímeros/metabolismo , Ácido gama-Aminobutírico/química , Animais , Feminino , Hidrólise , Masculino , Teste de Materiais , Camundongos , Polímeros/química , Polímeros/toxicidade , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...